384 research outputs found

    Toward quantum processing in molecules: A THz-bandwidth coherent memory for light

    Full text link
    The unusual features of quantum mechanics are enabling the development of technologies not possible with classical physics. These devices utilize nonclassical phenomena in the states of atoms, ions, and solid-state media as the basis for many prototypes. Here we investigate molecular states as a distinct alternative. We demonstrate a memory for light based on storing photons in the vibrations of hydrogen molecules. The THz-bandwidth molecular memory is used to store 100-fs pulses for durations up to 1ns, enabling 10,000 operational time bins. The results demonstrate the promise of molecules for constructing compact ultrafast quantum photonic technologies.Comment: 5 pages, 3 figures, 1 tabl

    Ultrafast slow-light: Raman-induced delay of THz-bandwidth pulses

    Full text link
    We propose and experimentally demonstrate a scheme to generate optically-controlled delays based on off-resonant Raman absorption. Dispersion in a transparency window between two neighboring, optically-activated Raman absorption lines is used to reduce the group velocity of broadband 765 nm pulses. We implement this approach in a potassium titanyl phosphate (KTP) waveguide at room temperature, and demonstrate Raman-induced delays of up to 140 fs for a 650-fs duration, 1.8-THz bandwidth, signal pulse; the available delay-bandwidth product is 1\approx1. Our approach is applicable to single photon signals, offers wavelength tunability, and is a step toward processing ultrafast photons.Comment: 5+4 pages, 4+2 figure

    Extending electron orbital precession to the molecular case: Can orbital alignment be used to observe wavepacket dynamics?

    Full text link
    The complexity of ultrafast molecular photoionization presents an obstacle to the modelling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline of two proposed feasible experiments and the calculation of their outcomes. Both of these proposals use Feshbach 87Rb2 molecules. We show that long-range molecular pump-probe experiments should observe spin-orbit precession given a suitable pump-pulse, and that the associated high-frequency beat signal in the ionization probability decays after a few tens of picoseconds. If the molecule was to be excited to only a single fine structure state state, then a low-frequency oscillation in the internuclear separation would be detectable through the timedependent ionization cross section, giving a mechanism that would enable observation of coherent vibrational motion in this molecule.Comment: 9 pages, 10 figures, PRA submissio

    Time-bin to Polarization Conversion of Ultrafast Photonic Qubits

    Full text link
    The encoding of quantum information in photonic time-bin qubits is apt for long distance quantum communication schemes. In practice, due to technical constraints such as detector response time, or the speed with which co-polarized time-bins can be switched, other encodings, e.g. polarization, are often preferred for operations like state detection. Here, we present the conversion of qubits between polarization and time-bin encodings using a method that is based on an ultrafast optical Kerr shutter and attain efficiencies of 97% and an average fidelity of 0.827+/-0.003 with shutter speeds near 1 ps. Our demonstration delineates an essential requirement for the development of hybrid and high-rate optical quantum networks

    Characterisation of a single photon event camera for quantum imaging

    Full text link
    We show a simple yet effective method that can be used to characterize the per pixel quantum efficiency and temporal resolution of a single photon event camera for quantum imaging applications. Utilizing photon pairs generated through spontaneous parametric down-conversion, the detection efficiency of each pixel, and the temporal resolution of the system, are extracted through coincidence measurements. We use this method to evaluate the TPX3CAM, with appended image intensifier, and measure an average efficiency of 7.4% and a temporal resolution of 7.3ns. Furthermore, this technique reveals important error mechanisms that can occur in post-processing. We expect that this technique, and elements therein, will be useful to characterise other quantum imaging systems.Comment: 9 pages, 5 figure

    Reconfigurable phase contrast microscopy with correlated photon pairs

    Full text link
    A phase-sensitive microscopy technique is proposed and demonstrated that employs the momentum correlations inherent in spontaneous parametric down-conversion. One photon from a correlated pair is focused onto a microscopic target while the other is measured in the Fourier plane. This provides knowledge of the position and angle of illumination for every photon striking the target, allowing full post-production control of the illumination angle used to form an image. The versatility of this approach is showcased with asymmetric illumination and differential phase contrast imaging, without any beam blocks or moving parts.Comment: 5 pages, 3 figure

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl
    corecore